Matroid Matching Via Mixed Skew-Symmetric Matrices

نویسندگان

  • James F. Geelen
  • Satoru Iwata
چکیده

Tutte associates a V by V skew-symmetric matrix T , having indeterminate entries, with a graph G=(V,E). This matrix, called the Tutte matrix, has rank exactly twice the size of a maximum cardinality matching of G. Thus, to find the size of a maximum matching it suffices to compute the rank of T . We consider the more general problem of computing the rank of T +K where K is a real V by V skew-symmetric matrix. This modest generalization of the matching problem contains the linear matroid matching problem and, more generally, the linear delta-matroid parity problem. We present a tight upper bound on the rank of T +K by decomposing T+K into a sum of matrices whose ranks are easy to compute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

Well-Quasi-Ordering of Matrices under Schur Complement and Applications to Directed Graphs

In [Rank-Width and Well-Quasi-Ordering of Skew-Symmetric or Symmetric Matrices, arXiv:1007.3807v1] Oum proved that, for a fixed finite field F, any infinite sequenceM1,M2, . . . of (skew) symmetric matrices over F of bounded F-rank-width has a pair i < j, such that Mi is isomorphic to a principal submatrix of a principal pivot transform of Mj . We generalise this result to σ-symmetric matrices ...

متن کامل

Rank-width and Well-quasi-ordering of Skew-Symmetric or Symmetric Matrices (extended abstract)

We prove that every infinite sequence of skew-symmetric or symmetric matrices M1, M2, . . . over a fixed finite field must have a pair Mi, Mj (i < j) such that Mi is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in Mj , if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitt...

متن کامل

Unitary Completions Of Complex Symmetric And Skew Symmetric Matrices ∗

Unitary symmetric completions of complex symmetric matrices are obtained via Autonne decomposition. The problem arises from atomic physics. Of independent interest unitary skew symmetric completions of skew symmetric matrices are also obtained by Hua decomposition.

متن کامل

Skew-Symmetric Matrix Polynomials and their Smith Forms

Two canonical forms for skew-symmetric matrix polynomials over arbitrary fields are characterized — the Smith form, and its skew-symmetric variant obtained via unimodular congruences. Applications include the analysis of the eigenvalue and elementary divisor structure of products of two skew-symmetric matrices, the derivation of a Smith-McMillan-like canonical form for skew-symmetric rational m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2005